BICCN Collection of Publications on the Brain, 2023

This series of publications, supported by the BRAIN Initiative Cell Census Network (BICCN), is published in coordinated issues of Science, Science Advances and Science Translational Medicine.

Background

The BRAIN Initiative Cell Census Network (BICCN) has laid critical groundwork for a Human Brain Cell Atlas by funding transformative initiatives that have developed next-generation technologies to explore the brain and nervous system. These efforts have now produced the first draft cell atlas of the entire brain and a detailed cell atlas of the regions of the cerebral cortex, both contributed here to support the Human Cell Atlas goal to complete a catalog of all of the cell types and subtypes of the human brain and nervous system. You can explore the atlases here.

This package of publications in Science and associated Journals listed below represents the breadth and scope of what is now possible to do in the human and closely-related non-human primate (NHP) brain. See https://www.biccn.org/science/human-and-nhp-cell-atlas for more details. These include a range of studies using single cell genomics (RNA-seq, ATAC-seq, methylation, and spatial transcriptomics) to study cellular organization in adult and developing human and NHP brain, as well as studies of the phenotypic characteristics of neuron types in human brain. The collection of publications also includes Introduction and Perspective articles.

Publications

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

Transcriptomic diversity of cell types across the adult human brain.

Siletti K; Hodge R; Mossi Albiach A; Lee KW; Ding SL; Hu L; Lönnerberg P; Bakken T; Casper T; Clark M et al

Science 2023;382;6667;eadd7046

The human brain directs complex behaviors, ranging from fine motor skills to abstract intelligence, but the diversity of cell types that support these skills has not been fully described. In this work, we used single-nucleus RNA sequencing to systematically survey cells across the entire adult human brain. We sampled more than three million nuclei from approximately 100 dissections across the forebrain, midbrain, and hindbrain in three postmortem donors. Our analysis identified 461 clusters and 3313 subclusters organized largely according to developmental origins and revealing high diversity in midbrain and hindbrain neurons. Astrocytes and oligodendrocyte-lineage cells also exhibited regional diversity at multiple scales. The transcriptomic census of the entire human brain presented in this work provides a resource for understanding the molecular diversity of the human brain in health and disease.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

A single-cell genomic atlas for maturation of the human cerebellum during early childhood.

Ament SA; Cortes-Gutierrez M; Herb BR; Mocci E; Colantuoni C; McCarthy MM

Science translational medicine 2023;eade1283

Inflammation early in life is a clinically established risk factor for autism spectrum disorders and schizophrenia, yet the impact of inflammation on human brain development is poorly understood. The cerebellum undergoes protracted postnatal maturation, making it especially susceptible to perturbations contributing to the risk of developing neurodevelopmental disorders. Here, using single-cell genomics of postmortem cerebellar brain samples, we characterized the postnatal development of cerebellar neurons and glia in 1 to 5 year-old children, comparing individuals who had died while experiencing inflammation to those who had died as a result of an accident. Our analyses revealed that inflammation and postnatal cerebellar maturation are associated with extensive, overlapping transcriptional changes primarily in two subtypes of inhibitory neurons: Purkinje neurons and Golgi neurons. Immunohistochemical analysis of a subset of these postmortem cerebellar samples revealed no change to Purkinje neuron soma size but evidence for increased activation of microglia in those children who had experienced inflammation. Maturation-associated and inflammation-associated gene expression changes included genes implicated in neurodevelopmental disorders. A gene regulatory network model integrating cell type-specific gene expression and chromatin accessibility identified seven temporally specific gene networks in Purkinje neurons and suggested that inflammation may be associated with the premature downregulation of developmental gene expression programs.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

Human voltage-gated Na+ and K+ channel properties underlie sustained fast AP signaling.

Wilbers R; Metodieva VD; Duverdin S; Heyer DB; Galakhova AA; Mertens EJ; Versluis TD; Baayen JC; Idema S; Noske DP et al

Science advances 2023;9;41;eade3300

Human cortical pyramidal neurons are large, have extensive dendritic trees, and yet have unexpectedly fast input-output properties: Rapid subthreshold synaptic membrane potential changes are reliably encoded in timing of action potentials (APs). Here, we tested whether biophysical properties of voltage-gated sodium (Na+) and potassium (K+) currents in human pyramidal neurons can explain their fast input-output properties. Human Na+ and K+ currents exhibited more depolarized voltage dependence, slower inactivation, and faster recovery from inactivation compared with their mouse counterparts. Computational modeling showed that despite lower Na+ channel densities in human neurons, the biophysical properties of Na+ channels resulted in higher channel availability and contributed to fast AP kinetics stability. Last, human Na+ channel properties also resulted in a larger dynamic range for encoding of subthreshold membrane potential changes. Thus, biophysical adaptations of voltage-gated Na+ and K+ channels enable fast input-output properties of large human pyramidal neurons.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

Temporal disparity of action potentials triggered in axon initial segments and distal axons in the neocortex.

Rózsa M; Tóth M; Oláh G; Baka J; Lákovics R; Barzó P; Tamás G

Science advances 2023;9;41;eade4511

Neural population activity determines the timing of synaptic inputs, which arrive to dendrites, cell bodies, and axon initial segments (AISs) of cortical neurons. Action potential initiation in the AIS (AIS-APs) is driven by input integration, and the phase preference of AIS-APs during network oscillations is characteristic to cell classes. Distal regions of cortical axons do not receive synaptic inputs, yet experimental induction protocols can trigger retroaxonal action potentials (RA-APs) in axons distal from the soma. We report spontaneously occurring RA-APs in human and rodent cortical interneurons that appear uncorrelated to inputs and population activity. Network-linked triggering of AIS-APs versus input-independent timing of RA-APs of the same interneurons results in disparate temporal contribution of a single cell to in vivo network operation through perisomatic and distal axonal firing.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

Comparative transcriptomics reveals human-specific cortical features.

Jorstad NL; Song JHT; Exposito-Alonso D; Suresh H; Castro-Pacheco N; Krienen FM; Yanny AM; Close J; Gelfand E; Long B et al

Science 2023;382;6667;eade9516

The cognitive abilities of humans are distinctive among primates, but their molecular and cellular substrates are poorly understood. We used comparative single-nucleus transcriptomics to analyze samples of the middle temporal gyrus (MTG) from adult humans, chimpanzees, gorillas, rhesus macaques, and common marmosets to understand human-specific features of the neocortex. Human, chimpanzee, and gorilla MTG showed highly similar cell-type composition and laminar organization as well as a large shift in proportions of deep-layer intratelencephalic-projecting neurons compared with macaque and marmoset MTG. Microglia, astrocytes, and oligodendrocytes had more-divergent expression across species compared with neurons or oligodendrocyte precursor cells, and neuronal expression diverged more rapidly on the human lineage. Only a few hundred genes showed human-specific patterning, suggesting that relatively few cellular and molecular changes distinctively define adult human cortical structure.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

Structural and functional specializations of human fast-spiking neurons support fast cortical signaling.

Wilbers R; Galakhova AA; Driessens SLW; Heistek TS; Metodieva VD; Hagemann J; Heyer DB; Mertens EJ; Deng S; Idema S et al

Science advances 2023;9;41;eadf0708

Fast-spiking interneurons (FSINs) provide fast inhibition that synchronizes neuronal activity and is critical for cognitive function. Fast synchronization frequencies are evolutionary conserved in the expanded human neocortex despite larger neuron-to-neuron distances that challenge fast input-output transfer functions of FSINs. Here, we test in human neurons from neurosurgery tissue, which mechanistic specializations of human FSINs explain their fast-signaling properties in human cortex. With morphological reconstructions, multipatch recordings, and biophysical modeling, we find that despite threefold longer dendritic path, human FSINs maintain fast inhibition between connected pyramidal neurons through several mechanisms: stronger synapse strength of excitatory inputs, larger dendrite diameter with reduced complexity, faster AP initiation, and faster and larger inhibitory output, while Na+ current activation/inactivation properties are similar. These adaptations underlie short input-output delays in fast inhibition of human pyramidal neurons through FSINs, explaining how cortical synchronization frequencies are conserved despite expanded and sparse network topology of human cortex.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

Morphoelectric and transcriptomic divergence of the layer 1 interneuron repertoire in human versus mouse neocortex.

Chartrand T; Dalley R; Close J; Goriounova NA; Lee BR; Mann R; Miller JA; Molnar G; Mukora A; Alfiler L et al

Science 2023;382;6667;eadf0805

Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is underexplored. Using Patch-seq recordings from human neurosurgical tissue, we identified four transcriptomic subclasses with mouse L1 homologs, along with distinct subtypes and types unmatched in mouse L1. Subclass and subtype comparisons showed stronger transcriptomic differences in human L1 and were correlated with strong morphoelectric variability along dimensions distinct from mouse L1 variability. Accompanied by greater layer thickness and other cytoarchitecture changes, these findings suggest that L1 has diverged in evolution, reflecting the demands of regulating the expanded human neocortical circuit.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

Single-cell analysis of prenatal and postnatal human cortical development.

Velmeshev D; Perez Y; Yan Z; Valencia JE; Castaneda-Castellanos DR; Wang L; Schirmer L; Mayer S; Wick B; Wang S et al

Science 2023;382;6667;eadf0834

We analyzed >700,000 single-nucleus RNA sequencing profiles from 106 donors during prenatal and postnatal developmental stages and identified lineage-specific programs that underlie the development of specific subtypes of excitatory cortical neurons, interneurons, glial cell types, and brain vasculature. By leveraging single-nucleus chromatin accessibility data, we delineated enhancer gene regulatory networks and transcription factors that control commitment of specific cortical lineages. By intersecting our results with genetic risk factors for human brain diseases, we identified the cortical cell types and lineages most vulnerable to genetic insults of different brain disorders, especially autism. We find that lineage-specific gene expression programs up-regulated in female cells are especially enriched for the genetic risk factors of autism. Our study captures the molecular progression of cortical lineages across human development.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

Comprehensive cell atlas of the first-trimester developing human brain.

Braun E; Danan-Gotthold M; Borm LE; Lee KW; Vinsland E; Lönnerberg P; Hu L; Li X; He X; Andrusivová Ž et al

Science 2023;382;6667;eadf1226

The adult human brain comprises more than a thousand distinct neuronal and glial cell types, a diversity that emerges during early brain development. To reveal the precise sequence of events during early brain development, we used single-cell RNA sequencing and spatial transcriptomics and uncovered cell states and trajectories in human brains at 5 to 14 postconceptional weeks (pcw). We identified 12 major classes that are organized as ~600 distinct cell states, which map to precise spatial anatomical domains at 5 pcw. We described detailed differentiation trajectories of the human forebrain and midbrain and found a large number of region-specific glioblasts that mature into distinct pre-astrocytes and pre-oligodendrocyte precursor cells. Our findings reveal the establishment of cell types during the first trimester of human brain development.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

Interindividual variation in human cortical cell type abundance and expression.

Johansen N; Somasundaram S; Travaglini KJ; Yanny AM; Shumyatcher M; Casper T; Cobbs C; Dee N; Ellenbogen R; Ferreira M et al

Science 2023;382;6667;eadf2359

Single-cell transcriptomic studies have identified a conserved set of neocortical cell types from small postmortem cohorts. We extended these efforts by assessing cell type variation across 75 adult individuals undergoing epilepsy and tumor surgeries. Nearly all nuclei map to one of 125 robust cell types identified in the middle temporal gyrus. However, we found interindividual variance in abundances and gene expression signatures, particularly in deep-layer glutamatergic neurons and microglia. A minority of donor variance is explainable by age, sex, ancestry, disease state, and cell state. Genomic variation was associated with expression of 150 to 250 genes for most cell types. This characterization of cellular variation provides a baseline for cell typing in health and disease.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

Whole human-brain mapping of single cortical neurons for profiling morphological diversity and stereotypy.

Han X; Guo S; Ji N; Li T; Liu J; Ye X; Wang Y; Yun Z; Xiong F; Rong J et al

Science advances 2023;9;41;eadf3771

Quantifying neuron morphology and distribution at the whole-brain scale is essential to understand the structure and diversity of cell types. It is exceedingly challenging to reuse recent technologies of single-cell labeling and whole-brain imaging to study human brains. We propose adaptive cell tomography (ACTomography), a low-cost, high-throughput, and high-efficacy tomography approach, based on adaptive targeting of individual cells. We established a platform to inject dyes into cortical neurons in surgical tissues of 18 patients with brain tumors or other conditions and one donated fresh postmortem brain. We collected three-dimensional images of 1746 cortical neurons, of which 852 neurons were reconstructed to quantify local dendritic morphology, and mapped to standard atlases. In our data, human neurons are more diverse across brain regions than by subject age or gender. The strong stereotypy within cohorts of brain regions allows generating a statistical tensor field of neuron morphology to characterize anatomical modularity of a human brain.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

Molecular programs of regional specification and neural stem cell fate progression in macaque telencephalon.

Micali N; Ma S; Li M; Kim SK; Mato-Blanco X; Sindhu SK; Arellano JI; Gao T; Shibata M; Gobeske KT et al

Science 2023;382;6667;eadf3786

During early telencephalic development, intricate processes of regional patterning and neural stem cell (NSC) fate specification take place. However, our understanding of these processes in primates, including both conserved and species-specific features, remains limited. Here, we profiled 761,529 single-cell transcriptomes from multiple regions of the prenatal macaque telencephalon. We deciphered the molecular programs of the early organizing centers and their cross-talk with NSCs, revealing primate-biased galanin-like peptide (GALP) signaling in the anteroventral telencephalon. Regional transcriptomic variations were observed along the frontotemporal axis during early stages of neocortical NSC progression and in neurons and astrocytes. Additionally, we found that genes associated with neuropsychiatric disorders and brain cancer risk might play critical roles in the early telencephalic organizers and during NSC progression.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

Single-cell DNA methylation and 3D genome architecture in the human brain.

Tian W; Zhou J; Bartlett A; Zeng Q; Liu H; Castanon RG; Kenworthy M; Altshul J; Valadon C; Aldridge A et al

Science 2023;382;6667;eadf5357

Delineating the gene-regulatory programs underlying complex cell types is fundamental for understanding brain function in health and disease. Here, we comprehensively examined human brain cell epigenomes by probing DNA methylation and chromatin conformation at single-cell resolution in 517 thousand cells (399 thousand neurons and 118 thousand non-neurons) from 46 regions of three adult male brains. We identified 188 cell types and characterized their molecular signatures. Integrative analyses revealed concordant changes in DNA methylation, chromatin accessibility, chromatin organization, and gene expression across cell types, cortical areas, and basal ganglia structures. We further developed single-cell methylation barcodes that reliably predict brain cell types using the methylation status of select genomic sites. This multimodal epigenomic brain cell atlas provides new insights into the complexity of cell-type-specific gene regulation in adult human brains.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex.

Lee BR; Dalley R; Miller JA; Chartrand T; Close J; Mann R; Mukora A; Ng L; Alfiler L; Baker K et al

Science 2023;382;6667;eadf6484

Human cortex transcriptomic studies have revealed a hierarchical organization of γ-aminobutyric acid-producing (GABAergic) neurons from subclasses to a high diversity of more granular types. Rapid GABAergic neuron viral genetic labeling plus Patch-seq (patch-clamp electrophysiology plus single-cell RNA sequencing) sampling in human brain slices was used to reliably target and analyze GABAergic neuron subclasses and individual transcriptomic types. This characterization elucidated transitions between PVALB and SST subclasses, revealed morphological heterogeneity within an abundant transcriptomic type, identified multiple spatially distinct types of the primate-specialized double bouquet cells (DBCs), and shed light on cellular differences between homologous mouse and human neocortical GABAergic neuron types. These results highlight the importance of multimodal phenotypic characterization for refinement of emerging transcriptomic cell type taxonomies and for understanding conserved and specialized cellular properties of human brain cell types.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

Transcriptomic cytoarchitecture reveals principles of human neocortex organization.

Jorstad NL; Close J; Johansen N; Yanny AM; Barkan ER; Travaglini KJ; Bertagnolli D; Campos J; Casper T; Crichton K et al

Science 2023;382;6667;eadf6812

Variation in cytoarchitecture is the basis for the histological definition of cortical areas. We used single cell transcriptomics and performed cellular characterization of the human cortex to better understand cortical areal specialization. Single-nucleus RNA-sequencing of 8 areas spanning cortical structural variation showed a highly consistent cellular makeup for 24 cell subclasses. However, proportions of excitatory neuron subclasses varied substantially, likely reflecting differences in connectivity across primary sensorimotor and association cortices. Laminar organization of astrocytes and oligodendrocytes also differed across areas. Primary visual cortex showed characteristic organization with major changes in the excitatory to inhibitory neuron ratio, expansion of layer 4 excitatory neurons, and specialized inhibitory neurons. These results lay the groundwork for a refined cellular and molecular characterization of human cortical cytoarchitecture and areal specialization.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

A comparative atlas of single-cell chromatin accessibility in the human brain.

Li YE; Preissl S; Miller M; Johnson ND; Wang Z; Jiao H; Zhu C; Wang Z; Xie Y; Poirion O et al

Science 2023;382;6667;eadf7044

Recent advances in single-cell transcriptomics have illuminated the diverse neuronal and glial cell types within the human brain. However, the regulatory programs governing cell identity and function remain unclear. Using a single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq), we explored open chromatin landscapes across 1.1 million cells in 42 brain regions from three adults. Integrating this data unveiled 107 distinct cell types and their specific utilization of 544,735 candidate cis-regulatory DNA elements (cCREs) in the human genome. Nearly a third of the cCREs demonstrated conservation and chromatin accessibility in the mouse brain cells. We reveal strong links between specific brain cell types and neuropsychiatric disorders including schizophrenia, bipolar disorder, Alzheimer's disease (AD), and major depression, and have developed deep learning models to predict the regulatory roles of noncoding risk variants in these disorders.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

Spatiotemporal molecular dynamics of the developing human thalamus.

Kim CN; Shin D; Wang A; Nowakowski TJ

Science 2023;382;6667;eadf9941

The thalamus plays a central coordinating role in the brain. Thalamic neurons are organized into spatially distinct nuclei, but the molecular architecture of thalamic development is poorly understood, especially in humans. To begin to delineate the molecular trajectories of cell fate specification and organization in the developing human thalamus, we used single-cell and multiplexed spatial transcriptomics. We show that molecularly defined thalamic neurons differentiate in the second trimester of human development and that these neurons organize into spatially and molecularly distinct nuclei. We identified major subtypes of glutamatergic neuron subtypes that are differentially enriched in anatomically distinct nuclei and six subtypes of γ-aminobutyric acid-mediated (GABAergic) neurons that are shared and distinct across thalamic nuclei.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

Multi-omic profiling of the developing human cerebral cortex at the single-cell level.

Zhu K; Bendl J; Rahman S; Vicari JM; Coleman C; Clarence T; Latouche O; Tsankova NM; Li A; Brennand KJ et al

Science advances 2023;9;41;eadg3754

The cellular complexity of the human brain is established via dynamic changes in gene expression throughout development that is mediated, in part, by the spatiotemporal activity of cis-regulatory elements (CREs). We simultaneously profiled gene expression and chromatin accessibility in 45,549 cortical nuclei across six broad developmental time points from fetus to adult. We identified cell type-specific domains in which chromatin accessibility is highly correlated with gene expression. Differentiation pseudotime trajectory analysis indicates that chromatin accessibility at CREs precedes transcription and that dynamic changes in chromatin structure play a critical role in neuronal lineage commitment. In addition, we mapped cell type-specific and temporally specific genetic loci implicated in neuropsychiatric traits, including schizophrenia and bipolar disorder. Together, our results describe the complex regulation of cell composition at critical stages in lineage determination and shed light on the impact of spatiotemporal alterations in gene expression on neuropsychiatric disease.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

A cellular resolution atlas of Broca's area.

Costantini I; Morgan L; Yang J; Balbastre Y; Varadarajan D; Pesce L; Scardigli M; Mazzamuto G; Gavryusev V; Castelli FM et al

Science advances 2023;9;41;eadg3844

Brain cells are arranged in laminar, nuclear, or columnar structures, spanning a range of scales. Here, we construct a reliable cell census in the frontal lobe of human cerebral cortex at micrometer resolution in a magnetic resonance imaging (MRI)-referenced system using innovative imaging and analysis methodologies. MRI establishes a macroscopic reference coordinate system of laminar and cytoarchitectural boundaries. Cell counting is obtained with a digital stereological approach on the 3D reconstruction at cellular resolution from a custom-made inverted confocal light-sheet fluorescence microscope (LSFM). Mesoscale optical coherence tomography enables the registration of the distorted histological cell typing obtained with LSFM to the MRI-based atlas coordinate system. The outcome is an integrated high-resolution cellular census of Broca's area in a human postmortem specimen, within a whole-brain reference space atlas.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

A single-cell multi-omic atlas spanning the adult rhesus macaque brain.

Chiou KL; Huang X; Bohlen MO; Tremblay S; DeCasien AR; O'Day DR; Spurrell CH; Gogate AA; Zintel TM; et al

Science advances 2023;9;41;eadh1914

Cataloging the diverse cellular architecture of the primate brain is crucial for understanding cognition, behavior, and disease in humans. Here, we generated a brain-wide single-cell multimodal molecular atlas of the rhesus macaque brain. Together, we profiled 2.58 M transcriptomes and 1.59 M epigenomes from single nuclei sampled from 30 regions across the adult brain. Cell composition differed extensively across the brain, revealing cellular signatures of region-specific functions. We also identified 1.19 M candidate regulatory elements, many previously unidentified, allowing us to explore the landscape of cis-regulatory grammar and neurological disease risk in a cell type-specific manner. Altogether, this multi-omic atlas provides an open resource for investigating the evolution of the human brain and identifying novel targets for disease interventions.

Editorial Editorial Editorial

Peer reviewed
Collection

BICCN-Brain - Science

Networks
Nervous system
Topics
Human Subjects, Model Organism Samples, Healthy Donors, Open Access Data, Computational Methods

A marmoset brain cell census reveals regional specialization of cellular identities.

Krienen FM; Levandowski KM; Zaniewski H; Del Rosario RCH; Schroeder ME; Goldman M; Wienisch M; Lutservitz A; Beja-Glasser VF; Chen C et al

Science advances 2023;9;41;eadk3986

The mammalian brain is composed of many brain structures, each with its own ontogenetic and developmental history. We used single-nucleus RNA sequencing to sample over 2.4 million brain cells across 18 locations in the common marmoset, a New World monkey primed for genetic engineering, and examined gene expression patterns of cell types within and across brain structures. The adult transcriptomic identity of most neuronal types is shaped more by developmental origin than by neurotransmitter signaling repertoire. Quantitative mapping of GABAergic types with single-molecule FISH (smFISH) reveals that interneurons in the striatum and neocortex follow distinct spatial principles, and that lateral prefrontal and other higher-order cortical association areas are distinguished by high proportions of VIP+ neurons. We use cell type-specific enhancers to drive AAV-GFP and reconstruct the morphologies of molecularly resolved interneuron types in neocortex and striatum. Our analyses highlight how lineage, local context, and functional class contribute to the transcriptional identity and biodistribution of primate brain cell types.

Editorial Editorial Editorial